
CloudABI: safe, testable and
maintainable software for UNIX
Speaker:
Ed Schouten, ed@nuxi.nl

BSDCan, Ottawa 2015-06-13

About me
● 2008-present: ed@FreeBSD.org.

○ 2005: Microsoft Xbox 1 port (with rink@).
○ 2008: SMP-safe TTY layer.
○ 2009: First version of vt(4).
○ 2010: ClangBSD.
○ 2011: C11: atomics, Unicode functions.

● 2012-2014: Assimilated by the Borg.
● 2015: Started my own company, Nuxi.

○ Infrastructure for secure and reliable cluster/cloud
computing.

2

Overview

● What’s wrong with UNIX?
● Short introduction to Capsicum
● CloudABI and Cloudlibc
● Future work

3

What is wrong with UNIX?

4

UNIX is awesome, but in my opinion:
● it doesn’t stimulate you to run software securely.
● it doesn’t stimulate you to write reusable and

testable software.
● system administration doesn’t scale.

UNIX security problem #1
A web service only needs to interact with:
● incoming network connections for HTTP requests,
● optional: a directory containing data files,
● optional: database backends.
In practice, an attacker can:
● create a tarball of all world-readable data under /,
● register cron jobs,
● spam TTYs using the write tool,
● turn the system into a botnet node.

5

UNIX security problem #2
Untrusted third-party applications:
● Executing them directly: extremely unsafe.
● Using Jails, Docker, etc.: still quite unsafe.
● Inside a VM: acceptable.

Downside: maintaining Jails and VMs requires more
effort.

6

UNIX programs are hard to reuse and test as a whole.

Let’s take a look at how these aspects are solved
elsewhere and compare.

Reusability and testability

7

Reuse and testing in Java #1
class WebServer {
 private Socket socket;
 private String root;
 WebServer() {
 this.socket = new TCPSocket(80);
 this.root = “/var/www”;
 }
}

8

Reuse and testing in Java #2
class WebServer {
 private Socket socket;
 private String root;
 WebServer(int port, String root) {
 this.socket = new TCPSocket(port);
 this.root = root;
 }
}

9

Reuse and testing in Java #3
class WebServer {
 private Socket socket;
 private Directory root;
 WebServer(Socket socket, Directory root) {
 this.socket = socket;
 this.root = root;
 }
}

10

UNIX programs are similar to the first two examples:
● Parameters are hardcoded.
● Parameters are specified in configuration files

stored at hardcoded locations.
● Resources are acquired on behalf of you, instead of

allowing them to be passed in.
A double standard, compared to how we write code.

Reusability and testability

11

Reusable and testable web server
#include <sys/socket.h>

#include <unistd.h>

int main() {

int fd;

while ((fd = accept(0, NULL, NULL)) >= 0) {

const char buf[] = “HTTP/1.1 200 OK\r\n”

 “Content-Type: text/plain\r\n\r\n”

 “Hello, world\n”;

write(fd, buf, sizeof(buf) - 1);

close(fd);

}

}

12

Reusable and testable web server

Web server is reusable:
● Web server can listen on any address family (IPv4,

IPv6), protocol (TCP, SCTP), address and port.
● Spawn more on the same socket for concurrency.

Web server is testable:
● It can be spawned with a UNIX socket. Fake

requests can be sent programmatically.

13

Overview

● What’s wrong with UNIX?
● Short introduction to Capsicum
● CloudABI and Cloudlibc
● Future work

14

Capsicum
Technique available on FreeBSD to sandbox software:
1. Program starts up like a regular UNIX process.
2. Process calls cap_enter().

○ Process can interact with file descriptors.
read(), write(), accept(), openat(), etc.

○ Process can’t interact with global namespaces.
open(), etc. will return ENOTCAPABLE.

Used by dhclient, hastd, ping, sshd, tcpdump, and
various other programs.

15

● Capsicum is awesome! It works as advertised.
Other systems should also support it.

● ‘Capsicum doesn’t scale’.
○ Porting small shell tools to Capsicum is easy.
○ Porting applications that use external libraries becomes

exponentially harder.
● There is no guidance when porting applications.

○ Trial and error until the program works.
● FreeBSD libraries don’t work well with Capsicum.

My experiences using Capsicum

16

What does the following code do?
/* Timezones. */

localtime_r(&t, &tm);

/* Locales. */

l = newlocale(LC_ALL_MASK, “zh_CN.UTF-8”, 0);

wcstombs_l(buf, L“北京市”, sizeof(buf), l);

/* Random data? */

fd = open(“/dev/urandom”, O_RDONLY);

if (fd == -1) {

gettimeofday(&tm, NULL);

pid = getpid();

}

17

Contradicting requirements
● In regular applications we want to load

configuration at run time, e.g. from /usr/share.
● For Capsicumized binaries it may make more sense

to have them compiled in.
● We want functions like open(), etc. to be present.
● But throwing a compiler error when used after

cap_enter() would prevent lots of foot-shooting.

18

Pure capability-based computing
Thought experiment: having a separate pure
capability-based runtime environment.
● Program is always in capabilities mode.
● Capsicum-unsafe functions removed entirely.

○ Causes breakage, but this is good. It’s easier to fix the
code to build than it is to debug.

● Implementations customized to the environment.
○ Built-in datasets: locales, timezones,

getprotobyname(), getservbyname(), etc.

19

● Safe execution.
○ Less need for virtualization or jails.
○ Simple cloud computing service: run applications for

customers instead of offering virtual machines.
● Reusability and testability by default.

○ Just use a different set of file descriptors.
● Dependencies of the application are explicit.

○ Easier release engineering.
○ Higher-level orchestration of software in a cluster.

Implications of pure capabilities

20

Overview

● What’s wrong with UNIX?
● Short introduction to Capsicum
● CloudABI and Cloudlibc
● Future work

21

Introducing CloudABI
A specification for a pure capabilities-based runtime:
● POSIX + Capsicum - incompatible features.
● Pretty compact: just 57 system calls.
● Constants, types and structures are defined in a

reusable and embeddable format.
○ Support can easily be added to existing operating,

similar to COMPAT_LINUX.
○ Compile once, run everywhere.
○ Easier to use CloudABI without using the C runtime.

22

Low-level API
/* Allocate memory. */
void *mem;
cloudabi_errno_t error = cloudabi_sys_mem_map(NULL, size,
 CLOUDABI_PROT_READ | CLOUDABI_PROT_WRITE,
 CLOUDABI_MAP_PRIVATE | CLOUDABI_MAP_ANON, -1, &mem);

/* Write to a file. */
cloudabi_ciovec_t iov = { .iov_base = “Hello\n”, .iov_len = 6 };
cloudabi_size_t written;
error = cloudabi_sys_fd_write(fd, &iov, 1, &written);

/* Terminate gracefully. */
cloudabi_sys_proc_exit(123);

23

/* Terminate abnormally. */
cloudabi_sys_proc_raise(CLOUDABI_SIGABRT);

/* Obtain random data. */
char buf[100];
cloudabi_errno_t error = cloudabi_sys_random_get(buf, sizeof(buf));

/* Create a directory. */
const char *dirname = “homework”;
error = cloudabi_sys_file_mkdir(fd, dirname, strlen(dirname));

Low-level API

24

Cloudlibc
Cloudlibc is a C library built on top of the low-level API.
● Only contains functions that make sense in a

capability-based environment.
○ The goal: 90% POSIX compliant.
○ Compiler errors when using unsupported constructs.

● Very high testing coverage.
○ ~650 unit tests.
○ Good to test the library itself.
○ Also useful to test conformance of the OS.

25

Contributed code in Cloudlibc

● malloc(): jemalloc.
● <math.h> and <complex.h>: OpenLibm.

○ Portable version of FreeBSD’s and OpenBSD’s msun.
● Floating point printing and parsing: double-

conversion library.
○ Uses Florian Loitsch’s Grisu algorithm.
○ Supposedly faster than David M. Gay’s gdtoa.
○ Extensively used by Google (Chrome, V8, Dart).

● IANA tzdata, but not tzcode.

26

Complete:
arpa/inet.h assert.h complex.h cpio.h ctype.h dirent.h elf.h errno.h fcntl.h
fenv.h float.h iconv.h inttypes.h iso646.h langinfo.h libgen.h limits.h link.h
locale.h math.h monetary.h netinet/in.h poll.h pthread.h sched.h semaphore.h
setjmp.h signal.h stdalign.h stdarg.h stdatomic.h stdbool.h stddef.h stdint.h
stdlib.h stdnoreturn.h strings.h sys/capsicum.h sys/mman.h sys/stat.h sys/time.h
sys/types.h sys/uio.h sys/un.h syslog.h tar.h testing.h tgmath.h threads.h time.h
uchar.h wctype.h

Mostly done:
stdio.h string.h sys/procdesc.h sys/socket.h unistd.h wchar.h

Progress report on Cloudlibc

27

Progress report on Cloudlibc

28

In progress:
aio.h dlfcn.h fnmatch.h netdb.h regex.h sys/event.h

(Likely) not going to be implemented:
fmtmsg.h ftw.h glob.h grp.h mqueue.h ndbm.h net/if.h netinet/tcp.h nl_types.h
pwd.h search.h spawn.h stropts.h sys/ipc.h sys/msg.h sys/resource.h sys/select.h
sys/sem.h sys/shm.h sys/statvfs.h sys/times.h sys/utsname.h sys/wait.h termios.h
trace.h ulimit.h utime.h utmpx.h wordexp.h

Hardware architectures:
● x86-64
Operating systems:
● FreeBSD: 99.9% of the tests pass.
● NetBSD: 99% of the tests pass.
● Linux: 90% of the tests pass.
● Others: 0% of the tests pass.

Supported platforms

29

How to use CloudABI

1. Install Clang and Binutils, no patches required.
2. Install Cloudlibc.
3. Install additional libraries, such as libc++ for C++14

support.
4. Patch up your operating system kernel to support

CloudABI executables.
5. There is no step 5.

30

Overview

● What’s wrong with UNIX?
● Short introduction to Capsicum
● CloudABI and Cloudlibc
● Future work

31

Future work

● Upstream FreeBSD and NetBSD support.
● Upstream remaining libc++ changes.
● Finish the Linux port.
● Create packages/ports for the Cloudlibc toolchain.
● Have a package manager for standard libraries.
● Design cluster management/orchestration system

for running CloudABI processes at a large scale.

32

CloudABI sources, documentation, etc:

https://github.com/NuxiNL

Contacting Nuxi:

info@nuxi.nl

More information

33

https://github.com/NuxiNL
https://github.com/NuxiNL
mailto:info@nuxi.nl
mailto:info@nuxi.nl

